O₂ Gas Sensor Using Supported Hydrophobic Room-temperature Ionic Liquid Membrane-coated electrode

Rong Wang, Satoshi Hoyano, and Takeo Ohsaka*

Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502

(Received September 16, 2003; CL-030862)

A solid-state amperometric O_2 gas sensor was successfully fabricated by using supported 1-*n*-butyl-3-methylimidazolium hexafluorophosphate (BMIPF₆) porous polyethylene membrane as a solid-state electrolyte. The present O_2 gas sensor, which is capable of being operated at room temperature, shows a wide detection range and a high stability.

Recently, room-temperature ionic liquids (RTILs) have been used in many areas of chemistry, and may also be useful for fabricating gas sensors,¹ as they have low melting point, wide electrochemical window, and high solubility for a wide range of materials. Especially, a high ionic conductivity of RTIL at room temperature allows the gas sensor to operate at room temperature. In addition, a negligible vapor pressure of RTILs does not cause the drying out of the electrolyte which is a serious problem for the sensors using solid polymer electrolyte films.² In this letter, a novel solid-state amperometric O₂ gas sensor based on the supported BMIPF₆ membrane will be proposed.

Figure 1 shows the schematic representation of the electrochemical measurement system used in this study, in which the supported BMIPF₆ membrane was prepared by soaking up the porous polyethylene membrane (7P03A, Teijin Solufill Co., Japan) in BMIPF₆ solution (Fluka) for at least 1 day under reduced pressure at 30 °C. The obtained supported BMIPF₆ membrane was then closely mounted on the surface of the epoxide resin disk, in which a three-electrode system was constructed, to fabricate the O₂ gas-sensing electrode system. The dried pure O₂ (or N₂) gas, water-saturated pure O₂ (or N₂) gas and dried O₂–N₂ gas mixtures used in the electrochemical measurements were introduced through the gas flowing-routes a, b, and c shown in Figure 1, respectively.

The redox behavior of O₂ at the BMIPF₆ membrane-coated electrode is shown in Figure 2. In dried O₂ atmosphere, a couple of redox peaks were observed on the CV (voltammogram (b)) with formal potential at ca. -0.66 V vs Ag, which is similar to that obtained for O₂ reduction in BMIPF₆ solution.³ Thus, the observed cathodic and anodic peaks can be assigned to the one-electron reduction of O_2 to superoxide ion (O_2^{-1}) and the reoxidation of O2-* to O2, respectively. This well-defined CV also indicates that the supported BMIPF₆ membrane has a high ionic conductivity at room temperature. In water-saturated O2 atmosphere (voltammogram (c)), the cathodic peak potential shifted positively and the cathodic peak current value increased about twice compared with that obtained in dried O₂ atmosphere. Thus, the new cathodic peak at about -0.7 V can be assigned to the two-electron reduction of O_2 to H_2O_2 .⁴ In addition, the anodic peak at ca. -0.53 V disappeared and two new anodic peaks at 0.35 V and ca. 1.0 V were observed. These two new anodic

Figure 1. Schematic representation of the electrochemical measurement system used in this study. (1) N_2 gas tank, (2) O_2 gas tank, (3) gas blender, (4) valve, (5) bottle containing Milli-Q water, (6) supported BMIPF₆ membrane, (7) GC disk (diameter: 1 mm) working electrode, (8) Ag disk (diameter: 1 mm) reference electrode, (9) Pt ring (width: 1 mm, length: 50 mm) counter electrode, (10) epoxide resin, (11) O_2 gas-sensing electrode system, (12) potentiostat and (13) computer.

Figure 2. Cyclic voltammograms (CVs) obtained at the supported BMIPF₆ membrane-coated electrode at 25 ± 1 °C under (a) dried N₂ gas, (b, d) dried O₂ gas, and (c) water-saturated O₂ gas atmospheres. After measuring voltammogram (c), the electrode system was held in dried O₂ gas atmosphere for 3 min, and then voltammogram (d) was obtained. Voltammogram (e) was obtained at supported EMIBF₄ membrane-coated electrode under dried O₂ atmosphere. Scan rate was 100 mV s^{-1} .

peaks can be regarded as the reoxidation of H_2O_2 . After measuring voltammogram (c), the electrode system was held in dried O_2 gas atmosphere for 3 min, and then the voltammogram (d) was obtained. The voltammogram (d) slightly negatively shifted compared with voltammogram (b), probably due to the potential change of the Ag quasi-reference electrode. The repeated intro-

6

duction and removal of moisture resulted in the reproducible voltammograms of (c) and (d), respectively. Thus, we found that the water contained in the O₂-sensing electrode system changed the reduction of O₂ from one-electron reaction to two-electron reaction, but the water in the electrode system could be easily removed by holding the electrode system in dried O₂ gas atmosphere for ca. 3 min (Figure 2), and thus, the electrode system can be recovered as a result of the fact that the solid-state electrolyte membrane was composed of the hydrophobic materials, i.e., BMIPF₆⁴ and porous polyethylene membrane. Figure 2 also shows the CV (voltammogram (e)) obtained at 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF₄) membrane-coated electrode in dried O₂ atmosphere. As EMIBF₄ is a hydrophilic ionic liquid, compared with BMIPF₆, the saturated concentration of O₂ in the supported EMIBF₄ membrane is lower and consequently the smaller redox response was obtained at the EMIBF₄ membrane-coated electrode (voltammograms (b) and (e)).

Potential-step chronoamperometry was used to characterize the supported $BMIPF_6$ membrane-coated electrode system as an

Figure 3. Typical potential-step chronoamperometric current responses obtained at the supported BMIPF₆ membrane-coated electrode in dried O₂ gas streams at 25 ± 1 °C. O₂ concentration was changed from 0 to 100% (v/v) O₂ in O₂–N₂ gas mixtures. The potential step was repeated between 0 and -0.9 V vs Ag every 20 s, shown as the inset. *t*_c and *t*_a mean the sampling times during the cathodic and anodic potential steps, respectively.

Figure 4. Variation of the current signal with O_2 concentration in O_2 - N_2 gas mixed streams at the supported BMIPF₆ membrane-coated electrode. The data were obtained from Figure 3. The current responses were recorded at (a) t_c : 0.4 s, (b) t_c : 20 s, and (c) t_a : 0.4 s.

O₂ gas sensor. The potential-time waveform of potential-step chronoamperometry and chronoamperometric current responses obtained for different concentrations of O₂ in gas phase are shown in Figure 3. When the potential was stepped from 0 to -0.9 V, the O₂ molecule in the supported BMIPF₆ membrane was reduced to O_2^{-} , and after several seconds the reduction current attained an approximately constant value, as a steadystate supply of O_2 from the gas phase into the membrane can be reached. In the reverse step (from -0.9 to 0 V), the current corresponding to the reoxidation of O_2^{-} to O_2 was observed. Unlike the reduction current, the oxidation current gradually decreased and reached the background level after 20 s, because O_2^{-1} in the membrane was completely consumed. Thus, the transient and steady-state currents for the reduction of O_2 to O_2^{-1} $(I_{c,trans} \text{ and } I_{c,s} \text{ obtained at } 0.4 \text{ and } 20 \text{ s after the potential was}$ stepped to -0.9 V) as well as the transient current corresponding to the reoxidation of O_2^{-} to O_2 ($I_{a,trans}$ obtained at 0.4 s after the potential was stepped to 0 V) were typically used for measuring the concentration of O_2 in gas phase. The calibration curves (Figure 4) obtained for $I_{c,s}$ and $I_{c,trans}$ showed the straight lines with the sensitivities of 0.80 and 4.60 μ A (% (v/v))⁻¹, respectively. The good linearity $(r^2 > 0.998)$ of these two calibration curves obtained in the O₂ concentration range from 0 to 100% (v/v) demonstrates that this O_2 gas sensor has a wide detection range. The calibration curve obtained for Ia,trans could be expressed by a quadratic equation, probably resulting from the limited diffusion of O_2^{-} in the membrane and its decomposition. This point remains to be clarified theoretically. Ic,trans response is recommended to use for O₂ sensing, as it is simpler to use a linear current-concentration relationship rather than a quadratic one, and in addition the $I_{c,trans}$ response is larger than the $I_{c,s}$ response. The utility of the present O₂ sensor is restricted for detecting O_2 in a dry gas stream. The sensor can be continuously used for at least twelve hours, and it can be easily recovered even if a water-containing sample gas should be flowed through the electrode system.

In conclusion, we have successfully developed an amperometric O₂ gas sensor based on the supported BMIPF₆ porous polyethylene membrane-coated electrodes. Some characteristic currents i.e., $I_{c,trans}$, $I_{c,s}$, and $I_{a,trans}$, obtained by potential-step chronoamperometry were used for determining the O₂ concentration in a dry gas stream. This sensor showed a wide detection range, a high sensitivity and a good reproducibility.

The authors gratefully acknowledge Teijin Solufill Co. for supplying the porous polyethylene membrane and Dr. Okajima for his helpful discussion. The present work was financially supported by Grant-in-Aids for Scientific Research on Priority Areas (No. 417) and Scientific Research (A) (No. 10305064) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. R. W. acknowledges the government of Japan for a Monbu-Kagakusho scholarship.

References

- Q. Cai, Y. Z. Xian, H. Li, Y. M. Zhang, J. Tang, and L. T. Jin, *Huadong Shifan Daxue Xuebao, Ziran Kexueban*, 2001, 57.
- 2 a) K. Wallgren and S. Sotiropoulos, *Electrochim. Acta*, 46, 1523 (2001). b) N. Mayo, R. Harth, U. Mor, D. Marouani, J. Hayon, and A. Bettelheim, *Anal. Chim. Acta*, 310, 139 (1995).
- 3 I. M. AlNashef, M. L. Leonard, M. C. Kittle, M. A. Matthews, and J. W. Weidner, *Electrochem. Solid-State Lett.*, 4, D16 (2001).
- 4 J. Fuller, A. C. Breda, and R. T. Carlin, J. Electroanal. Chem., 459, 29 (1998).